Stability of low-rank matrix recovery and its connections to Banach space geometry

نویسندگان

  • Javier Alejandro Chávez-Domínguez
  • Denka Kutzarova
چکیده

Abstract. There are well-known relationships between compressed sensing and the geometry of the finite-dimensional lp spaces. A result of Kashin and Temlyakov [20] can be described as a characterization of the stability of the recovery of sparse vectors via l1minimization in terms of the Gelfand widths of certain identity mappings between finitedimensional l1 and l2 spaces, whereas a more recent result of Foucart, Pajor, Rauhut and Ullrich [16] proves an analogous relationship even for lp spaces with p < 1. In this paper we prove what we call matrix or noncommutative versions of these results: we characterize the stability of low-rank matrix recovery via Schatten p-(quasi-)norm minimization in terms of the Gelfand widths of certain identity mappings between finite-dimensional Schatten p-spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arens Regularity and Weak Amenability of Certain Matrix Algebras

Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...

متن کامل

Nonlinear inelastic dynamic analysis of space steel frames with semi-rigid connections in urban buildings

Applied studies addressing semi-rigid connections have been limited. Scant information exists in regulations except little brief information. Therefore, this research analyzes the behavior of three-dimensional steel frames and semi-rigid connections based on beam-column method and non-linear dynamic analysis. Stability functions and geometric stiffness matrix were used to study the non-linear g...

متن کامل

A Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces

Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.

متن کامل

Stability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space

In this paper, we prove the existence of a random fixed point of by using pointwise asymptotically nonexpansive random operator and the stability resultsof two iterative schemes for random operator.

متن کامل

Stability of the seventh-order functional Equations in the β-Gaussian space

The purpose of this paper is to solve the seventh-order functional equation as follows:  --------------------------- Next, we study the stability of this type of functional equation. Clearly, the function ----------  holds in this type functional equation. Also, we prove Hyers-Ulam stability for this type functional equation in the β-Gaussian Banach space.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1406.6712  شماره 

صفحات  -

تاریخ انتشار 2014